Nonlinear estimation of BOLD signals with the aid of cerebral blood volume imaging

نویسندگان

  • Yan Zhang
  • Zuli Wang
  • Zhongzhou Cai
  • Qiang Lin
  • Zhenghui Hu
چکیده

BACKGROUND The hemodynamic balloon model describes the change in coupling from underlying neural activity to observed blood oxygen level dependent (BOLD) response. It plays an increasing important role in brain research using magnetic resonance imaging (MRI) techniques. However, changes in the BOLD signal are sensitive to the resting blood volume fraction (i.e., [Formula: see text]) associated with the regional vasculature. In previous studies the value was arbitrarily set to a physiologically plausible value to circumvent the ill-posedness of the inverse problem. These approaches fail to explore actual [Formula: see text] value and could yield inaccurate model estimation. METHODS The present study represents the first empiric attempt to derive the actual [Formula: see text] from data obtained using cerebral blood volume imaging, with the aim of augmenting the existing estimation schemes. Bimanual finger tapping experiments were performed to determine how [Formula: see text] influences the model estimation of BOLD signals within a single-region and multiple-regions (i.e., dynamic causal modeling). In order to show the significance of applying the true [Formula: see text], we have presented the different results obtained when using the real [Formula: see text] and assumed [Formula: see text] in terms of single-region model estimation and dynamic causal modeling. RESULTS The results show that [Formula: see text] significantly influences the estimation results within a single-region and multiple-regions. Using the actual [Formula: see text] might yield more realistic and physiologically meaningful model estimation results. CONCLUSION Incorporating regional venous information in the analysis of the hemodynamic model can provide more reliable and accurate parameter estimations and model predictions, and improve the inference about brain connectivity based on fMRI data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.

After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the ...

متن کامل

Negative BOLD with large increases in neuronal activity.

Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is widely used in neuroscience to study brain activity. However, BOLD fMRI does not measure neuronal activity directly but depends on cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of oxygen (CMRO(2)) consumption. Using fMRI, CBV, CBF, neuronal recordings, and CMRO(2) modeling, ...

متن کامل

Decreases of blood oxygenation level--dependent signal in the activated motor cortex during functional recovery after resection of a glioma.

The present case demonstrates that the blood oxygenation level-dependent (BOLD) signal intensity can decrease in the activated motor cortex on the lesion side (left) of a patient with a left frontal glioma during functional recovery after surgery. Near-infrared spectroscopy revealed that the decrease of BOLD signal was associated with increases of cerebral blood volume and deoxyhemoglobin conce...

متن کامل

Increases in oxygen consumption without cerebral blood volume change during visual stimulation under hypotension condition.

The magnitude of the blood oxygenation level-dependent (BOLD) signal depends on cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2). Thus, it is difficult to separate CMRO2 changes from CBF and CBV changes. To detect the BOLD signal changes induced only by CMRO2 responses without significant evoked CBF and CBV changes, BOLD and CBV functional mag...

متن کامل

Origin of negative blood oxygenation level-dependent fMRI signals.

Functional magnetic resonance imaging (fMRI) techniques are based on the assumption that changes in spike activity are accompanied by modulation in the blood oxygenation level-dependent (BOLD) signal. In addition to conventional increases in BOLD signals, sustained negative BOLD signal changes are occasionally observed and are thought to reflect a decrease in neural activity. In this study, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2016